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Iterative Solution of the Eigenvalue Problem for a
Dielectric Waveguide

Albert T. Galick, Thomas Kerkhoven, and Umberto Ravaioli, Member, IEEE

Abstract—We present a numerical approach to the simulation
of dielectric waveguides that is free of spurious modes and is
based on the solution of an eigenvalue problem for the two
transverse components of the magnetic field. We introduce a
new discretization which has several computational advan-
tages. In particular, by careful design of the discretization pro-
cedure we obtain systems of equations for the two components
which are equivalent in the sense that a rotation over 90° cor-
responds to a suitable permutation of indices. The eigenvalue
problem is solved iteratively by using an adapted version of the
Chebyshev-Arnoldi algorithm. This approach takes full advan-
tage of the sparsity of the matrix and circumvents the large
memory requirements and the large computational complexity
associated with dense methods. This allows us to employ meshes
that are sufficiently fine to resolve higher modes without large
discretization errors.

1. INTRODUCTION

IELECTRIC channel waveguides are widely used for

integrated circuit applications, from the microwave
to the optical frequency range. For an accurate analysis
of general waveguide structures of practical interest, nu-
merical solutions are necessary. As pointed out in [1],
[2], reliable simulation software should employ formula-
tions which are free of spurious modes, for instance by
solving directly the vector Helmholtz equation in terms of
the transverse magnetic field components H, and H,. Dis-
cretization of this vector equation leads to an eigenvalue
problem which implicitly includes the zero divergence re-
lation for the magnetic field, with consequent elimination
of spurious modes. This requires dealing with a larger,
nonsymmetric, discretized matrix. The size is particularly-
problematic if the solution is obtained with standard dense
eigenvalue solvers, which can only handle a relatively
small number of mesh points, even on the largest super-
computers available.
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In this paper we solve eigenvalue problems for the di-
electric waveguide with an efficient implementation of the
iterative Chebyshev—Armoldi algorithm. Our approach has
manageable memory requirements because it allows the
matrix of the discretized problem to be stored in sparse
form. Moreover, in this approach we impose the condi-
tion that the modes should be confined to the waveguide
to select in advance a region in the complex plane where
the eigenvalues should lie. This limits the number of ei-
genvalue/eigenvector pairs that are computed and, there-
fore, the computational complexity. Consequently, we can
employ extensive nonuniform meshes with many grid
points on which the discretization error can be controlled.
As part of the project we developed a novel discretization
scheme for the vector Helmholtz problem, where we ob-
tain systems of equations for the two components which
are equivalent in the sense that a rotation over 90° cor-
responds to a suitable permutation of indices.

II. DISCRETIZATION APPROACH

We employ a 5-point finite-difference formula based on
a box-integration method [3] depicted in Fig. 1. The car-
dinal points North (N), West (W), South (§), and East
(E) are used as references around the center point (P).
The mesh widths connecting P to the neighboring points
are indicated by n, w, s, and e. The boxes {; in Fig. 1 are
delimited by the mesh lines n, w, s, and e and by their
perpendicular bisectors. The dielectric permittivity inside
each box , is assumed to be a constant e;.

We assume a wave dependence of e"“ =% for the elec-
tromagnetic field. To ensure that spurious modes will not
be present in the solution [1], [4]. the H_ component is
determined by

V- H=203H + d,H — ifH, = 0. )

Here and throughout the paper we use the shorthand no-
tation 8, = 8/d, and d,, = 3°/32. We integrate the
Helmholtz equations for H, and H, over each box {}; sep-
arately, using

§> V.H, nds+ (0 pe — B7) SQ H,dA =0, (2
0, f

where o = x ory, V, = (d,, 9,), 09, is the boundary of
Q,, and n is the unit outward normal of 4%,. The first term
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represents the fluxes through the boundary of the box ;.
We use d,H, — d,H, = iweE, and Eq. (1) to restate the
continuity of the axial field components E, and H, across
an interface [5] in terms of the transverse magnetic ficld
components:

(axHy - any)z/éi = (aXHV B a,VHX)J/ej
0.H, + 8,H,), = (3,H, + 0,H,),.

The box-integration and interface matching equations for
H, at P from (2), (3), and (4) are assembled into the ma-

trix equation
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Fig. 1. The box integration scheme.

with 4 terms involving exterior fluxes, coupling terms,
box integrals, and interior fluxes. If the 8 X 8 matrix in
the last term is singular, i.e., if e;'e;' — e;'e; ! = 0,
then all interior fluxes are eliminated by taking an appro-
priate linear combination of the rows in (5). Otherwise,
the interior fluxes that cannot be eliminated are approxi-
mated by one-sided differences. The exterior fluxes of the
union of the {2, are approximated by centered differences
as in the standard box-integration scheme. The choice of
coefficients:

\/7 \/; \/; 63 VE €y, — 64,
1 €] €4 € €3
2+ 2 24 2 6
2 \[2 \[3 \/; \/64 ©

for the rows of (5) combines elimination of all interior
fluxes whenever possible with invariance under a rotation
of 90° of the discretized equations for H, and H,. The
resulting discretization for H, at point P is

w\@\ﬁ Ho = He | W\P\ﬁ
€y €4 2n € €
- ¢ _3 _1

€y
Hy =t [ o, +s\f+s\f
4w €y

. HxS Hxl’ +
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Hygp — Hp wzlu*
: + =+
4e 4 (n +5)

- € €
" (WNee, + eVese) Hp + ’6—2 - \/;-
1 2
B T O e
2 €3 €4 2
2
€ € € €
_@__ wn\/-;+ws\ﬁ+en\/;+es\ﬁl H,p.
4 €1 () €4 €3

The equations, their coeflicients, and the resulting dis-
cretized equation for H, are obtained from those for H, by
rotating the labels in (5), (6), and (7) counterclockwise as
follows:

X = ye- —Xx
H, ~ H, ~ —H,

n—wegeegv—-Q
NeWeS—-E~-N
1203w 4e1.

A formulation for smoothly varying dielectric permit-
tivity e (x, y) is given in [2]. The discretization in (7) can
be used in this situation as well. To this end, ¢, should be
taken to be e(x, y) at the outside corner of the box €.
With this interpretation of ¢;, our discretization for piece-
wise constant dielectric permittivity is consistent to first
order with the equations for smoothly varying dielectric
permittivity. The local truncation error of the discretiza-
tion was evaluated by Taylor expansion of H,, H,, and ¢,
centered at the point P. This was done with the Maple
system for symbolic computation [6].

This discretization yields a nonsymmetric generalized
eigenvalue problem, Kv = —B*Muy. It can be seen from
(7) that K has two diagonal blocks of five bands each for
H, and H,, and two off-diagonal blocks of three bands
each for the coupling terms, while M is a positive diago-
nal matrix. This generalized eigenvalue problem is recast
as a standard ei envalue problem, Ax = — B82%x, where A
=M '2KM™'? and x = M'/?p,

III. SoLUTION OF THE EIGENVALUE PROBLEM

For realistic grids, the use of standard dense matrix ei-
genvalue solvers leads to unmanageable CPU time and
memory requirements, since the solution for all the pos-
sible eigenvalues is attempted. Only a small fraction of
the eigenvalues cotrespond to confined modes. Because
we wish to select these modes, we impose the condition

Re (_Bz) < _wzueclad- (8)

Here, €.,q 1s the maximum value of the dielectric permit-
tivity in the cladding region. The computational complex-
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ity is greatly reduced by choosing an algorithm which
computes this very limited subset of eigenpairs at the low
end of the spectrum.

Appropriate algorithms for determining a subset of ei-
genvalues/eigenvectors of large, sparse, nonsymmetric
matrices include simultaneous iteration [7], nonsymme-
tric Lanczos algorithm [8], and variations on the method
of Arnoldi {9]. These are all projection methods [10]. We
have chosen the method of Arnoldi as the basic algorithm
for several reasons. First, Krylov subspace methods, such
as the Lanczos and Arnoldi algorithms, have superior
convergence properties for extremal eigenvalues [10] and
can be effectively accelerated by preconditioning [11].
Also, numerical stability is improved by the modified
Gram-Schmidt process in the Arnoldi iteration. Finally,
the Arnoldi method can easily be generalized to find ei-
genvalues of any given multiplicity.

We have chosen to use Chebyshev polynomial precon-
ditioning, which allows us to keep our matrix in banded
storage, rather than resort to inverse iteration {12]. We
precondition with the Chebyshev polynomial adapted to
the reference ellipse through A:

\N—d N —d
N =T, <—>/T< - > ©)
[ (o

In our computations, we use a degenerate reference el-
lipse with d — ¢ = N\, = —w” pe,y and with d + ¢ an
upper bound for the spectrum, as determined by Gersch-
gorin disks [13]. A typical example of p,, is plotted in Fig.
2. As n increases, || p, (N)| approaches [«(N\)]", where

a(N + (@N? — '/’

“N =000 T @O = )

and a()) is the major semiaxis of the ellipse through A
with center d and real focid — ¢, d + ¢ [14], [15]. Thus,
the strength of the preconditioning of A depends on the
distance between the confocal ellipses through N and A,.
The matrix-vector product v, = [ p,(4)] vy is computed
using the three-vector recursion {14], [15]

vy =222 U~ dlyo, -
C

0;0;+ U1,

where

1
0,41 = 2/(7[ _ Gj’
and v, = (0,/¢) (A — dl) vy, where oy = c¢/(\, — d).
The three vectors {v; _, v;, v; 4, } are taken to be contig-
uous in the storage reserved for the next three Krylov vec-
tors, thus reducing the need for access to slow memory—
a typical bottleneck in supercomputing applications.
The Chebyshev—Arnoldi algorithm generates an or-
thonormal basis V,, for the Krylov subspace K, [ p,(A).

UO] = span {UOs [pn (A)] Uy, [pn (A)]2 U, e ’

p1s( M)

_w2 HEclad

A
Fig. 2. The Chebyshev polynomial of (9) for n = 16.

[P (D] 'vy}. The Chebyshev polynomial precondi-
tioning greatly magnifies the separation of the eigenvalues
satisfying (8) relative to the rest of the spectrum, while
leaving the eigenvectors unchanged. Convergence to-
wards the desired eigenvectors is thus accelerated [12].
After finding the orthonormal basis V,, we take a Ray-
leigh quotient C,, = VAV,, of the operator A over the
Krylov subspace. The spectral decomposition C,,

Y, A, Y., ! is found using standard EISPACK routines. The
approximate eigenvalues and eigenvectors of 4 are then
A, and V, Y,. The dominant one of these, and any others
satisfying (8), are combined into a new starting vector vy,
and the whole process is repeated with stronger precon-
ditioning, i.c., polynomials of higher degree n, until the
residuals are within a prescribed tolerance. We have found
this outer iteration to be effective in removing unwanted
modes. Problems where double eigenvalues are expected
because of symmetry must use two independent starting
vectors vy, wy and a double-vector Arnoldi method so that
the projection subspace is K, ,{p,(4), Vy] e
K../2[ pa(A), wp]. To obtain satisfactory convergence be-
havior in this case, one should also increase m.

Our algorithm is more effective for finding several ei-
genvectors than the Arnoldi-Chebyshev method [14],
[15], which does not precondition the Arnoldi iteration,
but only its starting vector. Chebyshev polynomial pre-
conditioning allows difficult problems to be solved with a
Krylov subspace of fixed size m. Limiting the size of the
Krylov subspace also limits the computational complexity
of the modified Gram-Schmidt orthogonalization in the
Amnoldi algorithm. The storage requirement (in double
precision real numbers) of the Chebyshev-Armoldi algo-
rithm itself is approximately (2m + mblock + 3)N + 2m*
+ 3m, where N is the total number of unknowns and
mblock is the maximum expected eigenvalue multiplicity.
For our discretization, N = 2(nx — 2)(ny — 2), where nx
and ny are the number of grid lines in the x and y direc-
tions, and the banded matrix A requires storage of 8N.



GALICK et al.: ITERATIVE SOLUTION OF EIGENVALUE PROBLEM

IV. NUMERICAL RESULTS

We present numerical results for a number of repre-
sentative dielectric waveguides. The examples have been
selected to facilitate. comparison with previously pub-
lished numerical approaches, as detailed below. For all
computations we use a uniform grid in the core region.
The mesh spacing grows exponentially as the lines extend
far out into the cladding. Such grids both resolve rapid
oscillations of higher modes in the core region and extend
sufficiently far to allow the modes to decay exponentially
into the cladding. The latter requirement is particularly
relevant for modes close to their cutoff condition, as is the
case in Fig. 6, which is discussed below. With two real
field components at-each grid point (and up to about a
dozen complex unknowns per node in finite element dis-
cretizations of some similar problems.[16]), such grids
give rise to very large scale cigenvalue problems.

Our first example is a square waveguide. A double-vec-
tor Chebyshev-Armoldi method with a Krylov subspace
of dimension m = 24 was used. The dispersion plots in
Fig. 3 generally agree with earlier results from [1], [17],
[18]. For each mode, at low values of the normalized
propagation constant B, we present results only for fre-
quencies where there is sufficient decay within the discre-
tized domain. Insisting on sufficient decay, we do not find
the inflection points in the propagation curves for B near
0 that appear in [1]. It is likely that the inflection points
in these propagation curves are due to the use of meshes
with too few gridlines and over a spatial domain too small
to allow natural decay of modes near cutoff.

The modes of the square waveguide reflect its invari-
ance under a rotation of 90°. Double eigenvalues (dotted
lines in Fig. 3) correspond to degenerate modes which are
rotations of each other. Single eigenvalues (solid lines in
Fig. 3) correspond to nondegenerate modes which are ro-
tations of themselves. We could not label all modes un-
ambiguously employing simple double integer indices.
For example, because a lower mode should be labeled
H3;, and a higher mode should be labeled H3;, the novel
label H; | ,, was defined for the intermediate mode with
H, component shown in Fig. 4. In this labeling scheme,
the additional indices correspond to ‘‘kinks’’ at inter-
faces, which are allowed by the interface matching con-
ditions of (3) and (4). The size of these kinks decreases
with increasing frequency w, until a mode with kinks be-
comes indistinguishable from the corresponding mode
without them. In other words, 4(w) becomes more nearly
defective as w — oo,

Our second example is a channel waveguide. The dis-
persion plot is given in Fig. 5. A single-vector Che-
byshev-Armoldi method with a Krylov subspace of di-
mension m = 20 was used both for this example and the
next one. There is good qualitative agreement with earlier
results from [1], [17], [19]. Demonstrating the need for
large computational grids, we show in Fig. 6 the H, com-
ponent of the H3, mode for the channel waveguide of Fig.
5 at a normalized frequency of V' = 2.10, at which this
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Fig. 3. Square waveguide. Normalized propagation constant B = ((8 /ko)*
— €0) /(€1 — €o) versus normalized frequency V = koa(e, — e0)'/?, with ko
the free-space wavenumber. The computational domain is 5 u X 5 u, with
a =1 p, ¢ = 13.1¢0. The discretization is on a 65 X 65 nonuniform ,
rectangular grid. Solid lines indicate single modes and dotted lines double
modes.
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Fig. 4. H3 |, mode (H, component only) for a square waveguide as in
Fig. 3 at a normalized frequency of ¥V = 11.0. The plot is shown on a 55
X 55 centered subgrid.

mode has a normalized propagation constant of B = .005.
For clarity, the plot is presented on a 55 X 33 subgrid in
which it decays to 1%.of its maximum over the total 69
X 38 domain. Such a large domain is necessary to prop-
erly capture the decay in the cladding region of any mode
near cutoff. ‘

The strip-slab waveguide is our third example. The dis-
persion plot of the H}; mode is shown in Fig. 7 for four
different dielectric configurations as given in [1]. At low
values of the normalized frequency V, the eigenfunctions
expand considerably into the region of the cladding where
the dielectric permittivity is highest. This effect is espe-
cially pronounced in case 4), where ¢, = 2.575¢,.
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Fig. 5. Channel waveguide. Normalized propagation constant B =
((B/ko)* — €)/(e; — €) versus normalized frequency V = (2h/\) (e; —
€,)!/2, with k, the free-space wavenumber. The computational domain is
60 u X 32 pu, withh =3 u, ¢, = 2.13¢5 and ¢, = 2.25¢,. The discretization
is on a 69 X 38 nonuniform rectangular grid.

Fig. 6. H}; fnode (H, component only) for a channnel waveguide as in
Fig. 5 at a normalized frequency of VV = 2.10. The plot is shown on a 55
X 33 subgrid.

The computations were performed on a Sun 4 /490
" workstation. A typical execution time was aproximately
20 min to solve 16 modes in the square waveguide at a
normalized frequency of ¥V = 13.9, using the double-vec-
tor Chebyshev-Arnoldi method. For the channel wave-
guide, the execution times were considerably smaller,
since a single-vector method was used. The solution for
16 modes at V = 2.76 was obtained in approximately 5
min.

V. CONCLUSION

Realistic modeling of dielectric waveguides requires
solution of eigenvalue problems that are very large and
sparse. The dense solvers used in [1], [2], [4], [16] find
the complete spectral decomposition at the expense of

1.615 |

1.610 -

1) e4 = 2.500¢
2): €4 = 2.52560
3) €4 = 255060
4) €4 — 2.57560
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1.580
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Fig. 7. Strip-slab waveguide. Normalized propagation constant B = 3 /k,
versus normalized frequency V = ak,, with &, the free-space wavenumber.
The computational domain is 30 & X 30 u, witha = 3 u, ¢, = 2.55¢, €
= 2.62¢q, and e; = 2.50¢,. Dispersion plots for the fundamental mode
H7, are shown, using four different values for ¢4. The discretization is on
a 69 X 67 nonuniform rectangular grid.

greatly increased computational complexity and memory
requirements, to the extent of prohibiting the solution on
realistic grids. Since only the eigenvectors for the prop-
agating modes-are desired, projection methods are very
suitable for these applications. The Chebyshev-precon-
ditioned Arnoldi algorithm allowed us to simulate a wide
range of problems employing variable meshes with large
numbers of unknowns. The code we developed is robust
and easy to use, with automatic selection of most param-
eters. :

ACKNOWLEDGMENT

" The authors are highly indebted to Professor A. Sameh
who gave significant support over the course of this proj-
ect in many useful discussions and who allowed us to use
the facilities of the Center for Supercomputing Research
and Development. We wish to thank R. Sanders for her
help with the figures.

REFERENCES

[1] K. Bierwirth, N. Schulz, and F. Arndt, ‘‘Finite-difference analysis of

rectangular dielectric waveguide structures,”” [EEE Trans. Micro-

wave Theory Tech., vol. 34, no. 11, pp. 1104-1114, 1986.

N. Schulz, K. Bierwirth, F. Arndt, and U. Koster, ¢ ‘Finite-difference

method- without spurious solutions for the hybrid-mode analysis of

diffused channel waveguides,’” IEEE Trans. Microwave Theory Tech.,

vol. 38, no. 6, pp. 722-729, 1990.

R. Varga, Matrix Iterative Analysis.

Cliffs, NJ: 1962, p. 184.

K. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, ‘“Vectorial fi-

nite-element method without any spurious solutions for dielectric

waveguiding problems using transverse magnetic-field component,”’

IEEE Trans. Microwave Theory Tech., vol. 34, no. 11, pp. 1120~

1124, 1986.

[5] J. D. Jackson, Classical Electrodynamics, 2nd ed.
Wiley, 1974, pp. 17-22.

[6] B. W. Char, G. J. Fee, K. O. Geddes, G. H. Gonnet, and M. B.

[2

—

3

—

Prentice-Hall, Englewood

[4

—

New York:"



GALICK et al.: ITERATIVE SOLUTION OF EIGENVALUE PROBLEM

Monagan, ‘A tutorial introduction to Maple,”’ J. Symbolic Compu-
tation, vol. 2, no. 2, pp. 179-200, 1986.

[71 G. W. Stewart, ‘‘Simultaneous iteration for computing invariant sub-
spaces of non-Hermitian matrices,”’ Numer. Math., vol. 25, pp. 123~
136, 1976.

[8] B. N. Parlett, D. R. Taylor, and Z. A. Liu, ‘‘A look-ahead Lanczos
algorithm for unsymmetric matrices,”” Marh. Comp., vol. 44, pp.
105-124, 1985. ‘ .

{91 Y. Saad, ‘‘Variations of Arnoldi’s method for computing eigenele-
ments of large unsymmetric matrices,”” Linear Algebra and Its Ap-
plications, vol. 34, pp. 269-295, 1980.

{10] —, “*Projection methods for solving large sparse eigenvalue prob-
lems,’” in Matrix Pencils, Proceedings, vol. 973 of Lecture Notes in
Math., pp. 121-144, Springer-Verlag, 1982.

[11] V. I. Agoshkov, and J. A. Kuznetsov, ‘‘Lanczos method for the ei-
genvalue problem,’” in Comp. Meth. Linear Algebra, G. 1. Marchuk,
Ed., pp.-145-164, 1972 (in Russian).

[12] R. Natarajan, ‘*An Arnoldi-based iterative scheme for nonsymmetric
matrix pencils arising in finite element stability problems,’’ Tech.
Rep. RC 16327 (#69303), IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, 1990. .

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed.
Baltimore, MD: Johns Hopkins University Press, [989.

[14] Y. Saad, ‘“Chebyshev acceleration techniques for solving nonsym-
metric eigenvalue problems,”” Math. Comp., vol. 42, no. 166, pp.
567-588, 1984.

[L5] D. Ho, F. Chatelin, and M. Bennani, ‘‘Arnoldi-Tchebychev proce-
dure for large scale nonsymmetric matrices,”” Math. Model. Numer.
Anal., vol. 24, no. 1, pp. 53-65, 1990.

[16] J. Svedin, ‘A modified finite-element.method for diclectric wave-
guides using an asymptotically correct approximation on infinite ele-
ments,”” IEEE Trans. Microwave Theory Tech., vol. 39, no. 2, pp.
258-266, 1991.

[17] E. A. J. Marcatili, ‘‘Dielectric rectangluar waveguide and directional
coupler for integrated optics,”” Bell Syst. Tech. J., vol. 48, pp. 2071~
2102, 1969.

[18] E. Schweig and W. B. Bridges, ‘‘Computer analysis of dielectric
waveguides: A finite-difference method,”” IEEE Trans. Microwave
Theory Tech., vol. 32, no. 5, pp. 531-541, 1984.

[19] B. M. A. Rahman and J. B. Davis, ‘‘Penalty function improvement
of waveguide solution by finite elements,”” JEEE Trans. Microwave
Theory Tech., vol. 32, pp. 922-928, 1984.

Albert T. Galick was born in New Brunswick,
NJ, on July 23, 1958. He received the B.S. degree
in mathematics in 1980 from the Massachusetts
Institute of Technology, Cambridge, and the M.S.
degree in mathematics in 1984 from the Univer-
sity of Illinois at Urbana-Champaign (UIUC)..
He worked at AT&T as a COBOL programmer
in 1980 and as a C programmer from 1984 to 1986.
Since 1986, he has been a Research Assistant at
UIUC’s Center for Supercomputing Research and
Development, while working toward the Ph.D.

705

degree in computer science. His thesis treats large, sparse eigenvalue prob-
lems, specifically those arising in numerical simulations of electronic and
electromagnetic devices.

Thomas Kerkhoven received the Drs. degree in
Physics from the University of Amsterdam in
1981, and the Ph.D. in numerical analysis from
the Department of Computer Science at Yale Uni-
versity in 1985. Since 1986 he has been at the
University of Illinois in Urbana-Champaign, orig-
inally as Assistant Professor, and since 1989 as
Associate Professor. In 1990, he spent a semester
as consultant at AT&T Bell Laboratories, Murray
Hill, NJ and in 1991 a semester as visiting Asso-
ciate Professor at Duke University.

His research focuses on the development of numerical techniques for the
design of microelectronic devices. At the University of Illinois his primary
appointment is with the department of Computer Science. Moreover, he
holds appointments with the department of Electrical and Computer Engi-
neering, and the Beckman Institute of Advanced Science and Technology
at the University of Illinois.

Umberto Ravaioli (M’88) was born in 1955 in Forli, Italy. He received
the Laurea Dr. in electronics engineering and the Laurea Dr. in Physics
from the University of Bologna, Italy, in 1980 and 1982, respectively, and
the Ph.D. in electrical engineering from Arizona State University in 1986.

In 1982 he was a Research Fellow of the U. Bordoni Foundation, Rome,
for studies on microwave circuits and propagation. He joined the Depart-
ment of Electrical and Computer Engineering of the University of Illinois
at Urbana-Champaign in 1986, where he is now an Associate Professor.
Dr. Ravaioli’s current research mainly focuses on the physics and the
numerical simulation of high speed semiconductor devices, including as-
pects of supercomputation and visualization. His main interests are in the
areas of Monte Carlo particle simulation, energy balance modeling, opto-
electronic and quantum devices. )




