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Abstract—We present a numerical approach to the simulation In this paper we solve eigenvalue problems for the di-
of dielectric waveguides that is free of spurious modes and is

based on the solution of an eigenvalue problem for the two

transverse components of the magnetic field. We introduce a
new discretization which has several computational advan-

tages. In particular, by careful design of the discretization pro-

cedure we obtain systems of equations for the two components
which are equivalent in the sense that a rotation over 90° cor-
responds to a suitable permutation of indices. The eigenvalue

problem is solved iteratively by using an adapted version of the

Chebyshev-Arnoldi algorithm. This approach takes full advant-
age of the sparsity of the matrix and circumvents the large

memory requirements and the large computational complexity

associated with dense methods. This allows us to employ meshes
that are sufficiently fine to resolve higher modes without large

dkcretization errors.

I. INTRODUCTION

D IELECTRIC channel waveguides are widely used for

integrated circuit applications, from the microwave

to the optical frequency range. For an accurate analysis

of general waveguide structures of practical interest, nu-

merical solutions are necessary. As pointed out in [1],

[2], reliable simulation software should employ formula-

tions which are free of spurious modes, for instance by

solving directly the vector Helmholtz equation in terms of

the transverse magnetic field components H. and HY. Dis-

cretization of this vector equation leads to an eigenvalue

problem which implicitly includes the zero divergence re-

lation for the magnetic field, with consequent elimination

of spurious modes. This requires dealing with a larger,

nonsymmetric, discretized matrix. The size is particularly

problematic if the solution is obtained with standard dense

eigenvalue solvers, which can only handle a relatively

small number of mesh points, even on the largest super-

computers available.
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electric wav;guide with an &Ticient implementation of the

iterative Chebyshev-Arnoldi algorithm. Our approach has

manageable memory requirements because it allows the

matrix of the discretized problem to be stored in sparse

form. Moreover, in this approach we impose the condi-

tion that the modes should be confined to the waveguide

to select in advance a region in the complex plane where

the eigenvalues should lie. This limits the number of ei-

genvalue/eigenvector pairs that are computed and, there-

fore, the computational complexity. Consequently, we can

employ extensive nonuniform meshes with many grid

points on which the discretization error can be controlled.

As part of the project we developed a novel discretization

scheme for the vector Helmholtz problem, where we ob-

tain systems of equations for the two components which

are equivalent in the sense that a rotation over 900 cor-

responds to a suitable permutation of indices,

II. DISCRETIZATION APPROACH

We employ a 5-point finite-difference formula based on

a box-integration method [3] depicted in Fig. 1. The car-

dinal points North (N), West (W), South (S), and East

(E) are used as references around the center point (P).

The mesh widths connecting P to the neighboring points

are indicated by n, w, s, and e. The boxes fli in Fig. 1 are

delimited by the mesh lines n, w, s, and e and by their

perpendicular bisectors. The dielectric permittivity inside

each box Q is assumed to be a constant q.

We assume a wave dependence of e’(ut - ‘c) for the elec-

tromagnetic field. To ensure that spurious modes will not

be present in the solution [1], [4], the H: component is

determined by

V “ H = 8,,HX + dYHY – iflHz = O. (1)

Here and throughout the paper we use the shorthand no-

tation i3X = 818X and 8U = 82 /8~. We integrate the

Helmholtz equations for HX and HY over each box fli sep-

arately, using

+
V,HO o n b + (CO2/.K, – 62)

!
Ha (Z4 = O, (2)

an, n,

where ~ = x or Y, V~ = (13,., 8Y), 8Q is the boundary of

L?i, and n is the unit outward normal of M21. The first term
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represents the fluxes through the boundary of the box ~i.

We use dXHY – dYHX = iueE, and Eq. (1) to restate the

continuity of the axial field components Ez and HZ across

an interface [5] in terms of the transverse magnetic field

components:
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Fig. 1, The boxintegratlon scheme,

with 4 terms involving exterior fluxes, couplling terms,

box integrals, and interior fluxes. If the 8 x 8 matrix in

the last term is singular, i.e., if e~’e~’ – –1 _
e;’e4 — o,

then all interior fluxes are eliminated by taking an appro-

priate linear combination of the rows in (5). Otherwise,

the interior fluxes that cannot be eliminated are approxi-

mated by one-sided differences. The exterior fluxes of the

union of the Q, are approximated by centered differences

as in the standard box-integration scheme. The choice of

coefficients:
,—— — —

for the rows of (5) combines elimination of all interior

fluxes whenever possible with invariance under a rotation

of 900 of the discretized equations for H., and HY. The

resulting discretization for HX at point P is

(7)

The equations, their coefficients, and the resulting dis-

cretized equation for Hy are obtained from those for H, by

rotating the labels in (5), (6), and (7) counterclockwise as

follows:

x-y-—x

HX*HYM–H L

ni+ww,ywewn

NwW - S-EWN

l-2~3~4=1.

A formulation for smoothly varying dielectric permit-

tivity e (x, y) is given in [2]. The discretization in (7) can

be used in this situation as well. To this end, c, should be

taken to be e (x, y) at the outside corner of the box ~i.

With this interpretation of ~i, our discretization for piece-

wise constant dielectric permittivity is consistent to first

order with the equations for smoothly varying dielectric

permittivity. The local truncation error of the discretiza-

tion was evaluated by Taylor expansion of H,, Hy, and e,

centered at the point P. This was done with the Maple

system for symbolic computation [6].

This discretization yields a nonsymmetric generalized

eigenvalue problem, Kv = – ~ 2Mv. It can be seen from

(7) that K hlas two diagonal blocks of five bands each for

H,, and Hy, and two off-diagonal blocks of three bands

each for the coupling terms, while M is a positive diago-

nal matrix. This generalized eigenvalue problem is recast

as a standard ei envalue problem, Ax = – e 2X, where A
— f. M-l/?. KM-l -and~ = M112U.

III. SOLIJTION OF THE EIGENVALUE PROBLEM

For realistic grids, the use of standard dense matrix ei-

genvalue solvers leads to unmanageable CPU time and

memory requirements, since the solution for all the pos-

sible eigenvalues is attempted. Only a small fraction of

the eigenvalues correspond to confined modes. Because

we wish to select these modes, we impose the condition

Re (–@z) < ‘ti2fl~~l,& (8)

Here, ~Cl,dis the maximum value of the dielectric permit-

tivity in the cladding region. The computational complex-
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ity is greatly reduced by choosing an algorithm which

computes this very limited subset of eigenpairs at the low

end of the spectrum.

Appropriate algorithms for determining a subset of ei-

genvalues/eigenvectors of large, sparse, nonsymmetric

matrices include simultaneous iteration [7], nonsymme-

tric Lanczos algorithm [8], and variations on the method

of Arnoldi [9]. These are all projection methods [10]. We

have chosen the method of Arnoldi as the basic algorithm

for several reasons. First, Krylov subspace methods, such

as the Lanczos and Arnoldi algorithms, have superior

convergence properties for extremal eigenvalues [10] and

can be effectively accelerated by preconditioning [11].

Also, numerical stability is improved by the modified

Gram-Schmidt process in the Arnoldi iteration. Finally,

the Amoldi method can easily be generalized to find ei-

genvalues of any given multiplicity.

We have chosen to use Chebyshev polynomial precon-

ditioning, which allows us to keep our matrix in banded

storage, rather than resort to inverse iteration [12]. We

precondition with the Chebyshev polynomial adapted to

the reference ellipse through A,:

‘n(’)=‘++’?+) ‘9’
In our computations, we use a degenerate reference el-

lipse with d – c = & = –OJ2 pq~~ and with d + c an

upper bound for the spectrum, as determined by Gersch-

gorin disks [13]. A typical example of pn k plotted in Fig.

2. As n increases, II p,,(A) II approaches [~ ( A)]”, where

a(A) + (a(A)2 – c2)1/2
K(x) =

a(h, ) + (a(A.)2 – c2)1iz

and a(A) is the major semiaxis of the ellipse through h

with center d and real foci d – c, d + c [14], [15]. Thus,

the strength of the preconditioning of A depends on the

distance between the confocal ellipses through A and A,.
The matrix-vector product v. = [p. (A)] V. is computed

using the three-vector recursion [14], [15]

where

1
al+l =

21C{ – ~i’

and VI = (ul/c) (A – dl)uo, where u, = c\(h, – d).

The three vectors { ~i _ ,, ~i, t~i+ , ) are taken to be contig-

uous in the storage reserved for the next three Krylov vec-

tors, thus reducing the need for access to slow memory—

a typical bottleneck in supercomputing applications.

The Chebyshev—Arnoldi algorithm generates an or-

thonormal basis V~ for the Krylov subspace K,,, [ p. (A),

Vo] = span {VO$ [P. (4 I VO, [P,1(412VO, “ “ “ ,

Fig. 2. The Chebyshev polynomial of (9) for n = 16.

[ p,, (A)l’n -1 V.}. The Chebyshev polynomial precondi-

tioning greatly magnifies the separation of the eigenvalues

satisfying (8) relative to the rest of the spectrum, while

leaving the eigenvectors unchanged. Convergence to-

wards tlhe desired eigenvectors is thus accelerated [12].

After finding the orthonormal basis V~, we take a Ray-

leigh quotient C,. = V; A V~ of the operator A over the

Krylov subspace. The spectral decomposition C,. =

Y~ Am Y,; 1is found using standard EISPACK routines, The

approximate eigenvalues and eigenvectors of A are then

Am and V,,,Y,.. The dominant one of these, and any others

satisfying (8), are combined into a new starting vector Uo,

and the whole process is repeated with stronger precon-

ditioning, i.e., polynomials of higher degree n, until the

residuals are within a prescribed tolerance. We have found

this outer iteration to be effective in removing unwanted

modes. Problems where double eigenvalues are expected

because of symmetry must use two independent starting

vectors Vo, W. and a double-vector Amoldi method so that

the projection subspace is Km,/2 [ pti (A), V.] e

K~tz [ p,. (A), W.]. To obtain satisfactory convergence be-

havior in this case, one should also increase m.

Our a~lgorithm is more effective for finding several ei-

genvectors than the Arnoldi-Chebyshev method [14],

[15], wlhich does not precondition the Arnoldi iteration,

but only its starting vector. Chebyshev polynomial pre-

conditioning allows difficult problems to be solved with a

Krylov subspace of fixed size m. Limiting the size of the

Krylov subspace also limits the computational complexity

of the modified Gram–Schmidt orthogonalization in the

Amoldi algorithm. The storage requirement (in double

precision real numbers) of the Chebyshev-Arnoldi algo-

rithm itself is approximately (2m + mblock + 3) N + 2m 2

+ 3m, where N is the total number of unknowns and

mblock is the maximum expected eigenvalue multiplicity.

For our discretization, N = 2(nx – 2) (ny – 2), where nx

and ny are the number of grid lines in the x and y direc-

tions, and the banded matrix A requires storage of 8N.
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IV. NUMERICAL RESULTS

We present numerical results for a number of repre-

sentative dielectric waveguides. The examples have been

selected to facilitate comparison with previously pub-

lished numerical approaches, as detailed below. For all

computations we use a uniform grid in the core region.

The mesh spacing grows exponentially as the lines extend

far out into the cladding. Such grids both resolve rapid

oscillations of higher modes in the core region and extend

sufficiently far to allow the modes to decay exponentially

into the cladding. The latter requirement is particular y

relevant for modes close to their cutoff condition, as is the

case in Fig. 6, which is discussed below. With two real

field components at each grid point (and up to about a

dozen complex unknowns per node in finite element dis-

cretizations of some similar problems [16]), such grids

give rise to very large scale eigenvalue problems.

Our first example is a square waveguide. A double-vec-

tor Chebyshev–Arnoldi method with a Krylov subspace

of dimension m = 24 was used. The dispersion plots in

Fig. 3 generally agree with earlier results from [1], [17],

[18]. For each mode, at low values of the normalized

propagation constant B, we present results only for fre-

quencies where there is sufficient decay within the discre-

tized domain. Insisting on sufficient decay, we do not find

the inflection points in the propagation curves for B near

O that appear in [1]. It is likely that the inflection points

in these propagation curves are due to the use of meshes

with too few gridlines and over a spatial domain too small

to allow natural decay of modes near cutoff.

The modes of the square waveguide reflect its invari-

ance under a rotation of900. Double eigenvalues (dotted

lines in Fig, 3) correspond to degenerate modes, which are

rotations of each other. Single eigenvalues (solid lines in

Fig. 3) correspond to nondegenerate modes which are ro-

tations of themselves, We could not label all modes un-

ambiguously employing simple double integer indices.

For example, because a lower mode should be labeled

H~l, and a higher mode should be labeled H~3, the novel

label H;, ~+ ~ was defined for the intermediate tnode with

HX component shown in Fig. 4: In this labeling scheme,

the additional indices correspond to “kinks” at inter-

faces, which are allowed by the interface matching con-

ditions of (3) and (4), The size of these kinks decreases

with increasing frequency w, until a mode with kinks be-

comes indistinguishable from the corresponding mode

without them. In other words, A(u) becomes more nearly

defective as ~ ~ m.

Our second example is a channel waveguide. The dis-

persion plot is given in Fig. 5. A single-vector Che-

byshev-Amoldi method with a Krylov subspace of di-

mension m = 20 was used both for this example and the

next one. There is good qualitative agreement with earlier

results from [1], [17], [19]. Demonstrating the need for

large computational grids, we show in Fig. 6 the H, com-

ponent of the H~z mode for the channel waveguide of Fig.

5 at a normalized frequency of V = 2.10, at which this

B

0.0:—
! I

5 10 15 20 25 30 35

v

Fig. 3. Square waveguide. Normalized propagation constant B = (( (i I/ko)’
—

CO) /(c I – CO) versus normalized frequency V = ko a(~ 1 – CO) 1‘2, with kO

the free-space wavenumber. Tbe computational domain is 5 p x 5 ~, with
a = 1 p, e, =, 13.16.. The discretization is on a 65 X 65 nonuniform .
rectangular grid. Solid lines indicate single modes and dotted lines double

modes,

-----

Fig, 4. H;,,, ~ mode (Hx component only) for a square waveguide as in

Fig. 3 at a normalized frequency of V = 11.0. The plot is shown on a 55
x 55 centered subgrid.

mode has a normalized propagation constant of B = .005.

For clarity, the plot is presented on a 55 x 33 subgrid in
which it decays to 1 % of its maximum over the total 69

x 38 domain. Such a large domain is necessary to prop-

erly capture the decay in the cladding region of any mode

near cutoff.

The strip-slab waveguide is our third example. The dis-

persion plot of the H~l mode is shown in Fig. 7 for four

different dielectric configurations as given in [1]. At low

values of the normalized frequency V, the eigenfunctions

expand considerably into the region of the cladding where

the dielectric permittivity is highest. This effect is espe-

cially pronounced in case 4), where C4 = 2. 575c0.
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Fig. 5. Channel waveguide. Normalized propagation constant B =
(( (3/kO)2 – cl) /(c, – c,) versus normalized frequency V,= (2h/X) (62 –

IP with kOthe free. space Wavenumber. The Computatiomd domain’s
cl) >
60 ~ X 32 y, with h = 3 ~, e, = 2. 13c0 and Cz = 2.25c0. The discretization
is on a 69 x 38 nonuniform rectangular grid.

Y

L

Fig. 6. H;z mode (H, component only) for a channnel waveguide as in
Fig. 5 at a normalized frequency of V = 2.10. The plot is shown on a 55
x 33 subgrid.

The computations were performed on a Sun 4/490

workstation. A typical execution time was approximately

20 min to solve 16 modes in the square waveguide at a

normalized frequency of P’ = 13.9, using the double-vec-

tor Chebyshev–Arnoldi method. For the channel wave-

guide, the execution times were considerably smaller,

since a single-vector method was used. The solution for

16 modes at V = 2.76 was obtained in approximately 5

min.

V. CONCLUSION

Realistic modeling of dielectric waveguides requires

solution of eigenvalue problems that are very large and

sparse. The dense solvers used in [1], [2], [4], [16] find

the complete spectral decomposition at the expense of

B
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1.610
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1.600

1.5s0 k“- ad

o 5 10 15 20 25 30 35 40

v

Fig. 7. Strip-slab waveguide. Normalized propagation constant B = D/k.

versus normal ized frequency V = ako, with k. the free-space wave number.
The computational domain is 30 w X 30 y, with a = 3 M, Cl = 2.5560, e~
= 2.62e0, and e, = 2.50c0. Dispersion plots for the fundamental mode
fl~l are shown, using four different values for q. The discretization is on

a 69 X 67 nonuniform rectangular grid.

greatly increased computational complexity and memory

requirements, to the extent of prohibiting the solution on

realistic grids. Since only the eigenvectors for the prop-

agating modes are desired, projection methods are very

suitable for these applications. The Chebyshev-precon-

ditioned Arnoldi algorithm allowed us to simulate a wide

range of problems employing variable meshes with large

numbers of unknowns. The code we developed is robust

and easy to use, with automatic selection of most param-

eters.
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